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We study a simple embedding technique based on a matrix of person-
alized PageRank vectors seeded on a random set of nodes. We show that
the embedding produced by the element-wise logarithm of this matrix
(1) are related to the spectral embedding for a class of graphs where
spectral embeddings are significant, and hence useful representation of
the data, (2) can be done for the entire network or a smaller part of it,
which enables precise local representation, and (3) uses a relatively small
number of PageRank vectors compared to the size of the networks. Most
importantly, the general nature of this embedding strategy opens up many
emerging applications, where eigenvector and spectral techniques may
not be well established, to the PageRank-based relatives. For instance,
similar techniques can be used on PageRank vectors from hypergraphs
to get “spectral-like” embeddings.

1 introduction

The eigenvectors of the graph Laplacian are among the most widely used algo-
rithmic measures of a graph. They are used to find cuts and clusters in a variety
of settings [Shi and Malik, 2000; Chung, 1992; Pothen et al., 1990]. They give a
signal basis for a graph [Hammond et al., 2011; Donnat et al., 2018]. And one of
their original uses was to draw informative pictures of graphs in a low dimensional
space [Hall, 1970; Koren, 2003]. These are all related to the idea of embedding
the graph into a low dimensional space and recent uses have closely studied this
embedding framework.

Likewise, PageRank is itself a widely used algorithmic measure on a graph [Brin
and Page, 1998]. The uses are extremely diverse [Gleich, 2015]. Relationships
between PageRank and spectral clustering are also known [Andersen et al., 2006;
Mahoney et al., 2012; Kloster and Gleich, 2014]. These exist because both
techniques can be related to random walks, and seeded PageRank is a localized
type of random walk, or random walk with restart [Tong et al., 2006].

In this manuscript, we study a particular type of relationship between a matrix
of seeded PageRank vectors and the eigenvectors of the Laplacian matrix. Our
log-PageRank embedding uses the singular vectors of the elementwise log of a
random collection of seeded PageRank vectors. An example is in Figure 1. This
shows that log-PageRank embeddings resemble spectral clustering.

Our manuscript shows that this relationship is expected for degree-regular
graphs through an approximation argument (Section 5). This builds from a study
on chain graphs that closely characterizes the log-PageRank values (Section 4).

PageRank vectors have long been viewed in terms of log-scaling. When Google
published PageRank scores for websites, they were understood to represent an
approximation of the log of Google’s internal metrics [Bar-Yossef and Mashiach,
2008]. When PageRank was used in spam analysis, log scaling was used by
Becchetti et al. [2008, Section 6.4]. So a log-scaled analysis is not surprising.

That said, analyzing the singular vectors of personalized PageRank vectors
under log-scaling presents interesting challenges from a technical perspective. As
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(a) planar graph with 5000 nodes and 14962 edges & the words “log PR” (b) spectral embedding of the graph from the Laplacian eigenvectors

(c) log-PageRank embedding for α = 0.85 (d) log-PageRank embedding for α = 0.99 (e) log-PageRank embedding for α = 0.999.

FIGURE 1 – The embedding pictures
have all the nodes colored with the
same values to show relative position.
The log-PageRank embedding uses
singular vectors of the element-wise
logarithm of seeded PageRank vectors.
Our paper argues that the similarity
between (b), (d) and (e) is expected
through an approximation analysis.
The advantage the log-PageRank em-
beddings is that they can be deployed
in many emerging data scenarios
where spectral embeddings and eigen-
vectors are not as well established or
may be computationally expensive
but where analogues of random walks
or PageRank may be possible, as in
hypergraphs (see Figure 9b).

such, we are only able to get an approximate, although compelling, understanding
of the relationship illustrated in the figure.

These log-PageRank embeddings offer a different set of computational tradeoffs
compared with eigenvectors. First, they only require random samples of a diffusion
process on the graph. Indeed, a closely related methodology to these log-PageRank
embeddings was previously used in Fountoulakis et al. [2020] to compare spectral
clustering with alternatives. This shows how the ideas behind the log-PageRank
embeddings give more flexible structures to help users study their datasets. For
instance, it is easy to study a variety of localized log-PageRank embeddings
that only work in a subset of a graph. Yet, these can also be designed to pull
in other nearby regions as suggested by the PageRank vectors instead of more
brittle Dirichlet eigenvector approximations [Chung et al., 2011]. In this paper,
we briefly explore using log-PageRank embeddings on hypergraphs to visualize
their structure as well.

Moreover, the idea of customizing embeddings is highly relevant to the ongoing
use of graph embeddings for ML algorithms. Embedding development is the
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primary task in problems pertaining to network analysis, language processing,
image processing or any problem that seeks to understand and use data. Literature
on embedding is filled with learning models based on functions of spectral entities
[Yadati et al., 2019; Perozzi et al., 2014; Grover and Leskovec, 2016; Tudisco et al.,
2021b; Wang and Leskovec, 2020; Huang et al., 2021]. Like our log-scaling, these
embeddings often involve nonlinearities such as sigmoid.

PageRank or diffusion based techniques have previously been used for learning
graph embedding (or clustering) [Donnat et al., 2018; Klicpera et al., 2019; Yang
et al., 2020; Takai et al., 2020; Liu et al., 2021; Carletti et al., 2020] where the
personalized PageRank vector based on a set of nodes, called the seed set is
used for further computations. Interestingly, although each methodology comes
with its own set of merits, all of these methods boil down to a function of random
walk on the graph developed from the available data. For example, Chung [2007]
and Sahai et al. [2011] and Donnat et al. [2018] and Tsitsulin et al. [2018] are
based on different functions of the random walk matrix. PageRank too can be
expressed as an infinite geometric sum of the random walk matrix [Chung, 2007].

In summary, the contributions and remainder of this paper discuss:

· the log-PageRank embedding framework (Section 3)

· a study of log-PageRank values on a chain graph that shows how log-
PageRank values are related to graph distance (Section 4)

· an approximation analysis between log-PageRank embeddings and spectral
clustering on d-regular graphs (Section 5)

· a computational study of similarities and differences between spectral and
log-PageRank embeddings (Section 6)

· examples of log-PageRank embeddings in hypergraphs using hypergraph
PageRank [Liu et al., 2021] (Section 7).

2 preliminaries

In this manuscript we consider a connected weighted or unweighted undirected
graph G = (V,E) where V is the vertex set with n vertices and E is the edge
set with m edges. Let A and D denote the adjacency matrix and degree matrix
of a graph G correspondingly. The Laplacian matrix L of a graph G is D −A
and the normalized Laplacian matrix L is I −D−1/2AD−1/2. Let W denote
the lazy random walk I+AD−1

2 . For a column-stochastic matrix P , a stationary
distribution π is any solution to the eigensystem Pπ = π where π is non-negative
and sums to 1. This is an eigenvector of P corresponding to the eigenvalue 1.
The stationary distribution of P is unique if the underlying graph is connected.

We use subscript to index entries of a matrix or a vector: let Ai denote the ith
column of matrix A, Aij denote the (i, j)th entry of matrix A and Ai:j denote
the matrix of columns Ai, . . . ,Aj ; let xi denote the ith entry of vector x and
xi:j denote the vector of entries xi, . . . ,xj . Let e1, . . . , en denote the columns of
the identity matrix and the n standard basis vectors of Rn and e be the all-ones
vector. We use log . to denote the element-wise log operator applied to a vector.

PageRank The classical PageRank problem is defined as follows

DEFINITION 1 (see for example Gleich [2015]) Let P be a column-stochastic matrix and v be
a column-stochastic vector, then PageRank problem is to find the solution x to
the linear system

(I − αP )x = (1− α)v (1)

where the solution x is called the PageRank vector, α ∈ (0, 1) is the teleportation
parameter and v is the teleportation distribution over all vertices.
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By the definition above and the fact that all eigenvalues of a column-stochastic
matrix have magnitude at most 1, we have I − αP is non-singular and the
PageRank vector can be written as x = (1 − α)(I − αP )−1v. When the tele-
portation distribution v has support size 1, the PageRank problem is also called
personalized PageRank problem and the corresponding solution x is personalized
PageRank vector or a seeded PageRank vector. For convenience, let X(α) denote
(1− α)(I − αP )−1, x(u, α) denote the personalized PageRank vector seeded on
vertex u, i.e. x(u, α) = X(α)eu = (1− α)(I − αP )−1eu.

3 log-pagerank embedding

The authors of Fountoulakis et al. [2020] used the linearity of PageRank and the
relationship with an expectation to study spectral-like embeddings of nonlinear
operators.

This inspiration led to our study of the log-PageRank embedding detailed in
Algorithm 1. It takes as input the graph G = (V,E) and outputs the k-dimensional
node embeddings. Our technique offers freedom in the algorithm being used for
calculation of PageRank vector.

We randomly sample nodes of the graph, compute personalized PageRank
vectors, and then compute an elementwise log of the resulting vectors. Then we
compute an SVD of the overall set of vectors. The non-dominant vectors give
us our log-PageRank embedding. Note that a personalized PageRank vector has
mathematically non-negative entries for a connected graph, so computing the log
is always mathematically well defined. However, numerically, some of the elements
may be sufficiently close to zero to cause an algorithm to return a floating point
zero. For this reason, we often replace any zero entries with a value smaller than
the smallest non-zero element returned before taking the log. This only occurs
for small values of α and tends not to happen once α is close enough to one.

Parameters The user chosen parameters in this technique are the dimension
of embedding, k, the teleportation parameter, α, and the number of samples
s. The dimension is entirely at a user’s discretion. For the number of samples,
we suggest a result using a simple coupon collector-like bound that would be
common in randomized matrix computations. For the teleportation parameter,
we suggest use α > 0.9, such as α = 0.99 or α = 0.999. Because we use many
PageRank computations with large values of α, we find it pragmatic to compute a
single sparse LU decomposition of the matrix I −αP to repeatedly solve systems.
Apart from the PageRank computation, the runtime depends on the SVD of the
PageRank matrix, for which any type of randomized SVD computation could be
used to make it more efficient.

Intuition and Analysis The idea behind the algorithm is that the matrix
of samples should have substantial information from other eigenspaces beyond
the dominant one and the SVD will return this information. Our study of this
algorithm revealed that the log is essential to getting qualitatively similar pictures
such as those in Figure 1. We show in Section 5 that as α approaches 1, the
log-PageRank embedding approximates the eigenvectors of the lazy random walk
matrix W . We illustrate a simple example that motivates a relationship between
log-PageRank values and a notion of distance.

4 log-pagerank on the chain graph

We developed a closed form expression for the personalized PageRank on chain
graph and observed a linear dependence between the element-wise log of PageRank
and the graph distance. For a chain graph of size n > 2, we solve the linear
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Algorithm 1 Log-PageRank Embedding
Input: Graph adjacency matrix A, Dimension of embedding k, Number of

samples s ≥ k + 1 (we suggest s = (10 + k) log n), Teleportation parameter α
Output: Graph embedding Z ∈ Rn×k

1: for i = 1→ s do
2: u← random sample of 1 to n
3: Xi ← pagerank on A with seed u, teleportation param α
4: ▷ We use a single sparse LU on I − αP to compute PageRank
5: end for
6: Y ← log .(X) ▷ Apply element-wise log on X
7: U ,Σ,V ← SVD of Y
8: Z ← U2:k+1

9: return Z ▷ Return left singular vectors of Y

system defined in equation (1) with k as the seed node to obtain the following
closed form expression in terms of k, n, α.

xi =


cf(i), i ∈ {2, . . . , k − 1}
cα
2 (f(k − 1) + g(k + 1)), i = k

cg(i), i ∈ {k + 1, . . . , n− 1}
(2)

where

f(i) =
(+)i−1 + (−)i−1

(+)k−1 + (−)k−1
, g(i) =

(+)n−i + (−)n−i

(+)n−k + (−)n−k
,

c =

√
1− α

1 + α
, (+) =

1 +
√
1− α2

α
, (−) = 1−

√
1− α2

α
.

Notice that when α is far from 1, (−) ≈ 0 for high powers, and when α is close to
1, (+) ≈ (−). In both ways we get the same approximation that

xi ≈

{
c(+)−|i−k|, i ∈ [n] \ {k}
c α
(+) , i = k

.

Then the logarithm of PageRank expression for xi can be written as,

logxi ≈ −|k − i| log((+)) + log(

√
1− α

1 + α
)

The above formulation indicates a linear relation between the log-PageRank
and the distance from the seed node. This hints at log-PageRank being a good
measure of the structure of the network around the seed node.

We quickly verify that log-PageRank resembles the notion of “distance” in a
geometric graph. The graph is created by randomly sampling points and connect-
ing every point to its 6 nearest neighbors. The difference between PageRank and
log-PageRank in this context is illustrated in Figure 2.

5 relation between log-pagerank embedding
and spectral embedding

In this section, we theoretically illustrate the relation between log-PageRank
Embedding and Spectral Embedding on a special class of graphs, d-regular
graphs.

Recall that the lazy random walk matrix is W = I+AD−1

2 . Our use of the lazy
walk matrix is due to the simplicity in analyzing powers of the matrix because
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(a) PageRank values for a 10000 node graph
with 6 nearest neighbour with α = 0.999

(b) Log of PageRank values for a 10000 node
graph with 6 nearest neighbour with α =
0.999

(c) Normalized Adjacency powers for
the seed used in PageRank above and
p = 2000

FIGURE 2 – Distance effect created by
log of PageRank in a geometric graph.
The normalized adjacency matrix
power is (D−1/2AD−1/2)pv where
v is the same as the PageRank seed.
Note the stronger similarity of (b) and
(c). Also note the difference is at the
boundary. The boundary is where
we tend to see the biggest differences
between log-PageRank and spectral
embeddings.

it is fundamentally aperiodic. A more intricate analysis would likely be able to
remove the aperiodicity.

Let the transition probability matrix P of PageRank be the lazy random walk
matrix W . By a variety of existing analyses [Serra-Capizzano, 2005; Gleich, 2009],
we know that limα→1− x(u, α) = limα→1−(1− α)(I − αW )eu = π. This extends
to log by continuity. Thus, limα→1− log .(x(u, α)) = log .(π).

We continue our study on d-regular graphs. Because for d-regular graphs, A
shares the same eigenvectors with W , instead of analyzing the eigenvectors of
A as Spectral Embedding does, we analyze the eigenvectors of W and connect
them with log-PageRank Embedding.

We first prove a result which characterizes the relation between PageRank
vectors after element-wise log and columns of high power of W .

LEMMA 2 For a connected d-regular graph G, let x(u, α) be the personalized Page-
Rank vector seeded on vertex u with parameter α, we have

lim
α→1−

log .(x(u, α))

∥ log .(x(u, α))∥
= lim

k→∞

W keu
∥W keu∥

PROOF For d-regular graphs, the stationary distribution π of W is e
n . Thus

lim
α→1−

log .(x(u, α))

∥ log .(x(u, α))∥
=

log .(π)

∥ log .(π)∥
=

e√
n
.

Let QΛQT be the eigenvalue decomposition of W . From Perron–Frobenius theory
[Perron, 1907; Frobenius, 1912], since G is connected and W models a walk with
self-loop, we have that λ1 > |λi| for all i ̸= 1, and

lim
k→∞

W keu
∥W keu∥

= Q1 =
e√
n

■

Further, the approximation result below connects the eigenvectors of W with
the left singular vectors of the matrix composed of randomly sampled columns of
W k.

Approximation Result 1 For a graph G and m ≤ n, let k1, . . . , km be m large integers and
i1, . . . , im be m indices uniformly sampled from [n], in expectation left singular vec-
tors of B equal eigenvectors of W where B =

[
W k1ei1 W k2ei2 . . . W kmeim

]
.
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Justification As we know, the left singular vectors of B are the eigenvectors of BBT .
Let QΛQT be the eigenvalue decomposition of W , then we have W ki = QΛkiQT ,
and we have

Ei1,i2,...,imBBT = Ei1,i2,...,im

 m∑
j=1

QΛkjQTeije
T
ijQΛkjQT


=

 m∑
j=1

QΛkjQT I

n

IT

n
QΛkjQT


=

1

n2
Q

 m∑
j=1

Λkj

QT .

Therefore in expectation the first m eigenvectors of BBT are Q1, . . . ,Qm. Notice
that when one eigenvalue of W has multiplicity larger than 1, the corresponding
eigenvectors of BBT may undergo one orthogonal transformation but the spaces
they span are invariant. ■

The approximation result below states that the low-rank log-PageRank Em-
bedding is expected to approximate the Spectral Embedding for degree-regular
graphs.

Approximation Result 2 For a d-regular graph G and m ≤ n, let i1, . . . , im be m in-
dices randomly sampled from [n], for α close to 1, left singular vectors of
C = 1√

n

[
log .(x(i1,α))

∥ log .(x(i1,α))∥
log .(x(i2,α))

∥ log .(x(i2,α))∥ . . . log .(x(in,α))
∥ log .(x(in,α))∥

]
approximates the

eigenvectors of W .

Justification By Lemma 2, we know that limα→1−
log .(x(ij ,α))

∥ log .(x(ij ,α))∥ = limkj→∞
W kj eij

∥W kj eij
∥
.

Let QΛQT be the eigenvalue decomposition for W , we have for d-regular graphs,
Q1 = e√

n
and λ1 = 1. Thus, for large enough kj , W kjeij ≈ λ

kj

1 Q1Q
T
1 eij =

Q1Q
T
1 eij and ∥W kjeij∥ ≈ 1√

n
. Therefore let k1, . . . , km be m randomly sampled

large integers, we have

C =
1√
n

[
log .(x(i1,α))

∥ log .(x(i1,α))∥
log .(x(i2,α))

∥ log .(x(i2,α))∥ . . . log .(x(in,α))
∥ log .(x(in,α))∥

]
approximates

B =
[
W k1ei1 W k2ei2 . . . W kmeim

]
Further, by Approximation Result 1, we have in expectation left singular vec-
tors of B approximates the eigenvectors of W , thus left singular vectors of C
approximates the eigenvectors of W as well. ■

6 empirical comparison results

We study the log-PageRank embedding on synthetic and real world graphs. We
focus on those where the spectral embedding gives a good picture of the graph,
as spectral embeddings may fail to give useful pictures for many real-world
networks [Lang, 2005]. We will analyse its performance on nearest neighbour
graphs and the following graphs with a strong geometry.

6.1 IMPLEMENTATION
We implemented the log-PageRank embedding in Julia. We use the built in
sparse LU solver to factorize the PageRank matrix I −αP to solve linear systems
for large values of α. And we use the built in dense SVD solver. There are
many alternatives we could use here, but our focus was on understanding the
log-PageRank embeddings rather than optimizing the speed at which we can
compute them.
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(a) Graph for the word “log PR” with
5000 nodes, 14962 edges

(b) The Minnesota road network with
2640 nodes, 3302 edges

(c) The Tapir [Bern et al., 1994] graph with
1024 nodes, 2846 edges

FIGURE 3 – Our geometric graphs
6.2 QUALITATIVE AND QUANTITATIVE ERROR AND APPROXIMATION
Given a spectral embedding and a log-PageRank embedding, we first simply look
at the differences in the pictures. Our results say these should look similar, not
that they should be exactly the same as the graphs we study are not in the class
where we expect sharp approximations. Let the second singular vectors of the
log-PageRank embedding be u2, and the second eigenvector of the Laplacian be
z2. Likewise for the 3rd vectors. So the spectral embedding is z2, z3 and the
log-PageRank embedding is u2,u3.

We quantitatively measure the error by evaluating the relative difference
between the Rayleigh quotient with respect to the vectors used for embedding.
This gives us the following measure:

approximation error =
s− p

s
(3)

where

s =
zT2 Lz2
zT2 z2

, p =
uT
2 Lu2

uT
2 u2

.

The second way we evaluate the embeddings is by looking at the joint plot
of u2 vs. z2 and z3 vs. u3. If the embeddings are close, these should look like a
straight line, or at least a very highly correlated relationships.

6.3 EVALUATION ACROSS GRAPHS
We record the error according to equation (3) in Table 1 for the following types
of graphs.

Nearest Neighbor Graphs For a graph named n− k nearest neighbor, there
are n points randomly distributed in the unit square and connected to k nearest
neighbors.

Chain Graphs These are simply the chain graphs we had from the analysis in
Section 4.

Graphs with Strong Geometry These are the graphs from Figure 3.

Stochastic Block Models A graph named sbm(n, k, p, q) has k groups of n
vertices with inter-group probability p and between group probability q. These
show the worst approximation results and largest differences.
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Graph α = 0.99 α = 0.9999

raw log raw log
30-6 nearest neighbour 3.27% 0.06% 2.89% 0.05%
3000-6 nearest neighbour 47.6% 0.37% 5.06% 2.88%
10000-6 nearest neighbour 170.75% 2.13% 13.5% 1.76%

30 chain 26.88% 0.47% 28.42% 6.02%
3000 chain 2858.82% 1.06% 30.38% 0.75%

Minnesota n = 2640 16.07% 1.97% 11.15% 0.44%
Tapir n = 1024 10.17% 1.13% 15.41% 0.66%
LogPR n = 5000 19.95% 0.15% 4.76% 0.34%

sbm(50,60,0.001,0.005) 51.77% 15.22% 51.32% 67.25%
sbm(1000,3,0.001,0.005) 47.35% 16.93% 45.78% 89.39%
sbm(50,60,0.25,0.005) 17.88% 15.22% 90.13% 402.27%
sbm(1000,3,0.25,0.001) 53.7% 1.04% 16.21% 15.73%

TABLE 1 – Error between PageRank em-
bedding and spectral embedding for
different graphs at a low teleportation
probability, α = 0.99 and at a higher
one α = 0.99999 both without log
(raw) and with log.

6.4 A FEW EXAMPLES
Figure 5 and Figure 6 show the embeddings as α varies both with and without
the nonlinear log operation for the graphs in figures 3b and 3c. The result on the
“log PR” graph from Figure 3a was in the introduction.

On nearest neighbor graphs, such as Figure 7, these embeddings show a clear
rotational ambiguity that might arise with other evaluations of this strategy.
(This occured with the other graphs too.) Put plainly, the eigenvectors are almost
in 2d invariant subspace. Consequently, when we randomize the method, we can
only capture this near 2d subspace up to rotation. However, this will not show
high error with respect to the approximation error measure as the results are all
near eigenvectors.

We show one of the examples of the stochastic block model in Figure 8.
Although this has bad approximation with respect to the spectral embedding, the
result for the log-PageRank embedding for α = 0.99 is arguably better than the
spectral embedding.

0.370.01 22.8130-6 NN
4%

0.370.01 22.81

7%
0.370.01 22.81

10%

0.020.00 0.053k-6 NN 0.020.00 0.05 0.020.00 0.05

0.010.00 0.0310k-6 NN 0.000.00 0.02 0.000.00 0.02

0.140.00 24.6430 chain 0.140.00 24.64 0.140.00 24.64

0.020.00 0.093000 chain 0.010.00 0.06 0.010.00 0.05

0.020.00 0.04Minnesota 0.020.01 0.04 0.020.01 0.03

0.010.00 0.02Tapir 0.010.00 0.02 0.010.00 0.01

0.000.00 0.01logPR 0.000.00 0.00 0.000.00 0.00

FIGURE 4 – Error variation with column
for log of PageRank with α = 0.99.
The percentage indicated in the col-
umn headings are the fraction of the
nodes as seeds. Each entry is the vari-
ance, the maximum and the minimum
for 50 trials.

6.5 EMBEDDING ERROR VARIANCE
We studied the dependence of this error on the number of randomly sampled
nodes and which sampled nodes. We record this for log-PageRank at α = 0.99 in
Figure 4. This shows the distribution of errors as a density estimate, along with
the max/min values (small) and the median value (big).

As expected, there are largely minimal effects. This occurs because the
sensitivity of PageRank to the seed vector, v, is a function of α [Langville and
Meyer, 2006].

dx

dv
= (1− α)(I − αP )−1

which satisfies ∥ dxdv∥1 = 1. Further, for α→ 1, dependence of the PageRank values
on the v reduces. Our experiments confirm the same as the minimum, maximum
and variance of error over 50 trials show negligible change.

7 hypergraph embeddings

One driving reason for our study of the log-PageRank embedding is to support
similar embedding strategies for different types of data, such as those studied
in [Fountoulakis et al., 2020]. In this section, we use the log-PageRank embedding
technique on five hypergraphs: Yelp (https://www.yelp.com/dataset), Walmart
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FIGURE 5 – Comparison of embeddings
for the Minnesota network.

(a) Spectral Embedding

α
=

0
.9
9

(b) Log-PageRank (c) PageRank (d)u2 vs z2 /u3 vs z3

α
=

0
.9
9
9
9

(e) Log-PageRank (f) PageRank (g)u2 vs z2 /u3 vs z3

FIGURE 6 – Comparison of embeddings
for the Tapir graph.

(a) Spectral Embedding

α
=

0
.9
9

(b) Log-PageRank (c) PageRank (d)u2 vs z2 /u3 vs z3

α
=

0
.9
9
9
9

(e) Log-PageRank (f) PageRank (g)u2 vs z2 /u3 vs z3

FIGURE 7 – Embedding for 10000 node
graph with 6 nearest neighbours. Note
that log-PageRank and spectral em-
beddings are similar after a rotation.
This is expected because the eigenval-
ues are close in magnitude.

(a) Spectral Embedding

α
=

0
.9
9

(b) Log-PageRank (c) PageRank (d)u2 vs z2 /u3 vs z3

α
=

0
.9
9
9
9

(e) Log-PageRank (f) PageRank (g)u2 vs z2 /u3 vs z3

FIGURE 8 – Comparison of the embed-
ding techniques on the planted par-
tition model with good conductance
cuts. This is one case where the tech-
nique does not seem to work.

(a) Spectral Embedding

α
=

0
.9
9

(b) Log-PageRank (c) PageRank (d)u2 vs z2 /u3 vs z3

α
=

0
.9
9
9
9

(e) Log-PageRank (f) PageRank (g)u2 vs z2 /u3 vs z3

10



(a) Contact Primary School (b) Yelp Restaurants

FIGURE 9 – Log-PageRank embedding
of hypergraphs. The Contact Primary
School dataset has 242 nodes and
12704 hyperdges. Nodes are colored
by classroom and teachers, which
form cohesive groups due to the con-
tact structure. The Yelp Restaurant
dataset has 52260 nodes and 597261
hyperedges. Nodes are colored by one
of 14 states used for analysis, which
show clear geographic relationships.

Trips [Amburg et al., 2020] , a contact tracing network [Benson et al., 2018; Stehlé
et al., 2011], posts on Math Overflow [Veldt et al., 2020a], and a Drug Abuse
network (DAWN) [Amburg et al., 2020]. The only modification to our algorithm
is that we replace seeded PageRank in Algorithm 1 with the Local Quadratic
PageRank (LQPR), a method proposed in [Liu et al., 2021]. Specifically we use
LQHD with a 2-norm penalty with ρ = 0.5 for all experiments For the Yelp and
Walmart trips network, we set κ = 0.000025 and γ = 1.0 while for the Math
Overflow network, with the same sparsity factor κ = 0.000025 and γ = 0.001.
For Contact Primary School and DAWN, we set κ = 0.0025 and γ = 0.001.
These choices were made arbitrarily, there are small differences that result when
changing them.

Figure 9a shows our 2d embedding on Contact Primary School dataset where
each node represents a student or a teacher, each hyperedge represents a group of
people who are spatially close at a given time. Each node of the graph is colored
as a teacher or as classroom for the student. Note that each classroom forms a
cohesive group in the plot. The nodes for the teachers are not a good cluster
because different teachers go to different classrooms. Moreover, we observe that
the students from the same grade, e.g. students colored red (1B) and dark green
(1A), share some spatial proximity, which is due to the fact that their classrooms
are close.

Figure 9b shows our embedding on Yelp Review data. Following Veldt et al.
[2020b], we build one hypergraph with each restaurant being a node and each user
being a hyperedge. We show the state associated with each location as the color.
We can clearly see that our embedding captures the geographic information of
the underlying hypergraph. For example, the nodes labeled dark blue are those
restaurants from state Indiana, which are close to the orange nodes from state
Tennessee. Also the green nodes from state Florida are quite well-separated from
nodes with other colors, which is due to the fact that none of other 13 states we
plot is close to Florida.
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(a) DAWN (b) Walmart Trips (c) Math Overflow

FIGURE 10 – Log-PageRank embeddings
of the (a) DAWN dataset [Amburg
et al., 2020] with 2109 nodes (drugs)
and 87104 hyperedges where each hy-
peredge is an individual and the con-
sisting nodes are the drugs consumed
by them; the plot shows 3 out 10 la-
bels (b) the Walmart dataset [Amburg
et al., 2020] with 88860 nodes and
69906 hyperedges where each node
is a product and each hyperedge con-
sists of products purchased in one
trip to Walmart and (c) Math Over-
flow [Veldt et al., 2020a] dataset with
73851 nodes, 5446 hyperedges, where
each hyperedge multiple labels associ-
ated with a question; Although there
is structure evident in the plots, it
does not strongly correlate with the
known labels on the data (some of
the plotting makes the structure look
more present than it is).

In addition, we show log-PageRank embeddings of three other hypergraphs
in Figure 10a, 10b and 10c. We were unable to identify obvious relationships
between these embeddings and the existing groups, which means the embeddings
likely show a different type of structure. The promising results on all the datasets
above show that our simple algorithm is capable of generating good embeddings
even on higher order graphs.

8 related work, conclusion, and future
directions

The key finding of this paper is the elementwise log of a matrix of seeded PageRank
vector approximates the spectral embedding of the Laplacian in some scenarios.
This analysis can be transparently mapped to new scenarios such as hypergraphs
given a PageRank-like primitive. This greatly simplifies the scenario compared
with nonlinear spectral methods on hypergraphs [Tudisco et al., 2021c,a; Tudisco
and Higham, 2021; Nguyen et al., 2017].

The idea of using the log of a PageRank vector originated in Google’s initial
use of these for their PageRank scores. That said, the elementwise log emerged
in other scenarios as well. For example, Levy and Goldberg [2014] detail a
similar analysis between SkipGram [Mikolov et al., 2013], a popular representation
learning framework, and the SVD of the element wise log of a probability transition
matrix developed from the data. Following that, multiple papers [Chanpuriya
and Musco, 2020; Qiu et al., 2018] showed relationships between embedding
techniques [Grover and Leskovec, 2016; Tang et al., 2015a,b; Perozzi et al., 2014]
and asymptotic matrix expressions.

We believe our framework offers a successful technique for structural embed-
ding and opens up some nontrivial research problems. Our code to compute
these embeddings for these examples is available: https://github.com/dishashur/

log-pagerank. For example, although we provide an approximate analysis as to
why the log function and PageRank-like matrices converge to the spectral embed-
ding and hence generated meaningful representation, there does not yet exist a
quantifiable expression between the strength of this relation and the elements of
the structure, such as its conductance, sparsity, degree distribution. We believe
this work lays the foundation for a reliable structural representation and the
generalizability of this technique offers ample ground for new results.
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