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Role of BERT in misinformation detection

Anonymous Authors1

1. Abstract
This work revolves around the role of BERT and atten-
tion in the problem of information verification. Given a
claim, it is verified against an annotated corpus through
evidence sentences labelled as SUPPORTS, REFUTES and
NOT ENOUGH INFO. The work of (Zhou et al., 2019)
shows the performance of evidence aggregation through
attention on graph neural networks for the task. Later that
year, (Knyazev et al., 2019) explained the conditions under
which optimal generalization performance is achieved while
using attention over graph neural networks. The work of
(Clark et al., 2019) brought to notice the unrewarding scat-
tering effect of the dot-product attention employed thus far
towards attention tasks. In the next year, (Liu et al., 2020) in-
troduces kernel attention and shows better results along with
more explainability via employing methods from (Knyazev
et al., 2019) and kernel-based attention over graph neural
networks. Before (Liu et al., 2020), all work in this direction
employing attention (e.g. (Zhou et al., 2019)) made use of
BERT. It only makes sense to try and attempt to understand
the merits and recently noted demerits of the architecture
as has been explained in (Jawahar et al., 2019) and (Clark
et al., 2019). By addressing the latest issues, (Liu et al.,
2020) has introduced an architecture that produces state-of-
the-art result in misinformation classification. This work is
thus an attempt to understand the role played by different
components in that architecture.

2. Review and Critique
2.1. Introduction

Remember the activities of Cambridge Analytica that are
rumoured to have played a key role in 2016 US elections,
Brexit and other major political events. Apparently, it de-
veloped algorithms that analyzed and consequently learnt
to influence social paradigms through selective and targeted
abridged information spreading on social networking sites.
To combat digital mishaps like that, it is paramount that
wrong information be verified and stopped from spreading.
Misinformation detection has gained increasing importance
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in the light of recent events including misinformation spread-
ing regarding the novel coronavirus COVID-19. Several
algorithmic architectures have been proposed towards the
same. At the center of it all is attention. Graph attention net-
works is an intuitive way of modelling the relation between
claims and the related documents. Given a claim, a system
first retrieves related sentences from the corpus, develops a
graph out of the claim-retrieved sentence pair as nodes, car-
ries out joint reasoning on these sentences and marks each
sentence as SUPPORTS, REFUTES and NOT ENOUGH
INFO against the claim. Joint reasoning is conducted over
the sentences as the corpora available may also be noisy
for example, fabricated but approved article taken from the
internet. A sentence picked from a fabricated article may
give a different label when put to reasoning independently
as compared to jointly with all the other related sentences. A
key component common to all the proposed attention based
language models is the BERT architecture. It stands for Bidi-
rectional Encoder Representations from Transformers and
has done tremendously well in problems involving language
processing. In this work, our focus will be two-fold - on
comprehending the work by (Clark et al., 2019) that gives
excellent justifications of how BERT is able to perform so
well, and secondly, on exploring the novelty introduced in
(Liu et al., 2020) towards misinformation detection.

2.2. Review of works in this direction

The work in (Zhou et al., 2019) is guided by the fact that a
graph-based evidence aggregation will allow better interac-
tion between each evidence for a particular claim. Specifi-
cally, they propose a graph-based evidence aggregating and
reasoning (GEAR) framework based on a fully connected
evidence graph. The model further uses BERT to understand
the semantic structure. To understand why such an interac-
tion between evidence is necessary, consider the following
example from the paper.

Claim: Giada at Home was only available on DVD.

Evidence 1: Giada at Home is a television show and first
aired on October 18, 2008, on the Food Network.

Evidence 2: Food Network is an American basic cable and
satellite television channel.

Notice that the claim could have been labelled as NOT
ENOUGH INFO based only on Evidence 1. Only after facts
from Evidence 1 and 2 and reasoned over together, the claim
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can be correctly labelled as REFUTES.

The GEAR method is three-step pipeline - 1. Document
retrieval 2. Evidence selection 3. Claim verification based
on evidences.

For the first step, a constituency parser is used on the claim
to develop potential entities. This entities are used as search
queries for the Online MediaWiki API to find relevant
Wikipedia documents. A constituency parser basically refers
to developing a tree structure based on syntactic relations
of the sentence. In this work, it is done through the one pro-
vided by AllenNLP. The constituents identified as potential
entities are queried using the API and the top 7 results are
stored as candidate article set.

The second step is of evidence selection which refers to
picking relevant sentences from the articles selected in the
last step. This is done by calculating a relevance score
between the article sentences and the claim and the top 5
are selected as the final evidence. Further, during training of
the model, depending on the validation set result a threshold
τ is used to eliminate sentences that have a relevance score
less than τ . The optimizing function used for training is,∑

max(0, 1 + sn − sp) (1)

where sp ans sn are the relevance scores of positive and
negative samples respectively.

Next step is the last step of labelling the claim with respect
to the selected evidence. This step introduces novelty to
the procedure. First, for each claim - evidence sentence
pair (ei, c), an embedding is developed using BERT. The
augmentation of the claim and evidence into one node is
guided by the belief that for efficient message traversal
across the other nodes in the graph, information from the
claim is required along with that from the corresponding
evidence. An embedding is developed for claim c as well.
Now once the nodes are developed, reasoning needs to be
propagated among the evidences. That will translate to
message passing on the evidence-claim graph developed
previously. As the process begins, the hidden states are
represented as, ht = ht

1, ...,h
t
N where N is the number of

evidences selected for the claim, c, ht
i ∈ RF×1, F is the

number of features in each node, t is the layer. Next comes
the evidence reasoning network (ERNet) to propagate infor-
mation on the network. The attention coefficient between
neighboring nodes i and j is calculated as follows,

pi,j = Wt−1
1 (ReLU(Wt−1

0 (ht−1i ||ht−1j ))) (2)

where Wt−1
1 ∈ R1×H and Wt−1

0 ∈ RH×2F are weight
matrices. Then a softmax normalization is applied on pi,j
to get the normalized attention coefficients, αi,j . A linear
combination of αi,j with the previous hidden layer represen-
tation of jth neighbour, ht−1j , gives the current hidden layer

representation of node i, hti. After t = 0, 1, ..., T layers
of ERNet, the final hidden states hTi , i = 1, ..., N are sent
to evidence aggregator to determine the final label. The
evidence aggregator is basically an operation on all the final
hidden states obtained so far. Three operations have been
tried in the paper - attention, mean and max. The attention
operation works similarly as described in equation (2) with
input as the concatenation of c and hTj . The max aggregator
carries out element wise maximum operation on all the hid-
den states. The mean aggregator carries out element wise
mean operation on all of the hidden states. The final predic-
tion is given by using a softmax on the linear combination
of the outputs of the aggregating operation.

The work in (Knyazev et al., 2019) analyzes the generaliza-
tion efficiency of employing attention over nodes in graph
neural networks. Note than, in practice, attention can be
employed over nodes as well as edges. Here, the focus will
be on node attention. This paper draws a similarity between
attention in convolutional neural networks (CNN) and pool-
ing in graph neural network (GCN). Attention in a CNN can
be expressed as

Z = α
⊙

X (3)

X ∈ RN×C is the C-dimensional input and
⊙

is element
wise product. While pooling in a CNN happens over well-
defined grids, in a GCN, the pooling region is defined by
a cluster of similar nodes. But in top-k pooling, only a
fraction of input nodes is selected and the pooling operation
is performed on it. But that is equivalent to

Zi =

{
αiXi ∀x ∈ P,
∅ otherwise

where P is the set of indices selected for pooling. The only
difference between the above equation and (3) is the dimen-
sion of the output Zi. Thus, for a ratio, r = |P |

N , pooling in
GCN is same as attention in CNN. This observation inspired
creation of an unified block of attention and pooling in GCN.
This block is analysed under 3 different tasks that enables
studying the power of this block to generalize better.

The paper analyses the block with graph convolution net-
work (GCN) as well as Graph Isomorphisms network (GIN)
but here we will only focus on the results pertaining to GCN
as that is the component that will be required later. For
the model, a ratio of r = 0.8 was selected and α̃ was se-
lected as the threshold for selecting nodes to be operated
with the pool operation. An interesting feature that was
noted here was that the model assigned similar value of α̃
to local nodes. Now to train the model that predicts these
coefficients for nodes, methods used are LinearProjection
and DiffPool. LinearProjection is a where α is the single
layer projection of X and for DiffPool a separate GCN is
trained. Both cases use a softmax activation in the final
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layer and training loss is defined by the Kullback-Liebler
divergence loss.

The main observations of the paper underscore that using
attention over nodes in GCN can help them generalize better.
The three key factors influencing the generalization ability
of GCN is the initialization, strength and the hyperparam-
eters of the GCN and the attention model. Further in this
regard, in the supplementary material, the authors explore to
applying attention model to which layer leads to the optimal
result. They compare applying attention to the initial layers
and the deeper layers and find that while it is better for the
overall performance to have attention on the deeper layers,
it is both computationally efficient and easier to interpret to
have attention on the lower layers as it translates to selecting
what features are physically important and reduces the input
size for the higher layers.

The work in (Jawahar et al., 2019) and (Clark et al., 2019)
is targeted towards understanding the working of BERT.
While (Jawahar et al., 2019) aims to analyse the representa-
tions learnt in different layers of BERT, the efforts in (Clark
et al., 2019) are geared towards understanding the attention
mechanism in BERT.

(Jawahar et al., 2019) categorises their work into 3 levels
of information - phrase level, probing tasks to show the
hierarchy of information captured in BERT and the capac-
ity of BERT to keep track of associated subjects and verb
with multiple such pairs. For phrasal representation, the
span of each layer was visualized in the low-dimension and
it was seen that ”chunks” of similar phrases were better
represented in the graph of lower layers as compared to
higher layers. This proved that the lower layers are better
than the higher ones at capturing phrasal relations. Next,
for the understanding the hierarchy of linguistic features
learnt by BERT, probing methods are used. Probing method
here refers to feeding the output of a model for an auxil-
iary classification task. If the desired feature can the be
predicted well from that output, then it is highly likely that
the model that generated it, also encodes that property well.
Equivalently, here it will be used to assess the ability of
each layer to model certain linguistic features. Their ex-
periments show that BERT encodes surface information at
the bottom, syntactic information in the middle, semantic
information at the top. Further, it was found that the the
higher layers outperforms the trained version in the task of
predicting sentence length. For the third task of tracking the
relations between the nouns and verb present in a sentence,
it was found that the deeper layers were better at encod-
ing the relations between the nouns and the corresponding
verbs in each sentence. Lastly, to understand how BERT
learns the compositional structure, the authors use Tensor
Product Decomposition Networks (TPDN) which explicitly
composes the representation of the input token based on the

predetermined role scheme. A role scheme for a word, for
example, can be based on the path from the root node to
itself in the syntax tree. It is believed that if a TPDN can
approximate the representation learned by a neural model,
then it is highly likely that the predetermined role scheme is
a good indication of the compositional structure learnt by
the model.

(Clark et al., 2019) attempts to study the ”attention-maps”
in BERT. Specifically, the first task they probe is the general
pattern of attention in attention heads. For this the attention
maps were extracted from BERT-base over 992 Wikipedia
segments. Their findings include the fact that most attention
heads either focus on the previous token or on the next token
and very less attention is given to the current token. They
also found more attention was given to the [CLS] and [SEP]
tokens and have provided arguments as to why it is not
just a statistical consequence. The testing shows that the
increased attention on these special tokens is like the default
operation like ”no-op” of the attention head as in when the
attention head’s function is not applicable. This hypothesis
is validated by one of their experiments when the gradient
of the loss function with respect to attention on [SEP] token
was tracked and was found to be low. This would translate
as the loss does not depend much on the attention spent on
[SEP] and therefore validating the attention on [SEP] as ”no-
op” option. Further, and importantly, they find that some
lower layer attention heads have a scattered attention in the
sense that they spend at most 10% of their attention mass
on any single word. The term used in the paper is attention
entropy where a high entropy means highly distracted and
less attention. They have also noted that the last layer has a
very broad attention for the [CLS] token which turns out to
be fruitful in tasks where an aggregate representation of the
whole input is required.

(Clark et al., 2019) further attempts to understand the feature
of language learnt by each attention head. An important
step here was to modify the architecture of BERT to adapt
to word-word attention maps instead of token-token atten-
tion maps. The first feature evaluated in this regard is the
dependency relation,as in how well a particular attention
head captures semantic dependencies. Although the results
are inconclusive, some attention heads showed good re-
sults on particular relations. Next, they aim to verify the
attention maps in combined attention heads. The impor-
tant observations found here are that the English syntax is
pretty well captured in BERT’s attention maps and that the
vector representations captures equivalent syntactic infor-
mation as the attention maps. The next point of probing is
whether attention heads behave more similar to some atten-
tion heads compared to others. This is measured by using
the Jensen-Shannon Divergence (JSD) between any two at-
tention distributions and for visualizing, two dimensional
embedding are developed such that the Cartesian distance
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is a approximates the JSD well. It was found that heads in
the same layer often behave similar.

The work in (Liu et al., 2020) introduces the Kernel Graph
Attention Network (KGAT) to address the fact verification
problem as in (Zhou et al., 2019) but takes a different ap-
proach considering all the problems and advancements high-
lighted in the papers discusses above. In this section, I will
discuss the broad details of KGAT. The next section will
compare, contrast and draw a relation between the papers
discussed.

The paper starts with describing their kernel attention mech-
anism but the procedure to select articles and sentences that
act as evidence come first in the procedure, so I will be
discussing that first. In (Liu et al., 2020), the procedure to
select articles uses a constituency parser on the given claim
to extract potential entities. Then the online MediaWiki API
is used to extract documents that have a match with these
entities.The sentences that serve as evidence are further ex-
tracted from these retrieved documents using the ESIM and
BERT based sentence retrieval methods. In this work we
will focus on the BERT method of sentence retrieval where
the hidden state of the [CLS] token in each claim-evidence
pair node is projected to a score and the pairwise loss is
used to train the model.

Next comes the task of verifying the claim against the ev-
idence sentences retrieved in the last step. This is where
the novelty in the architecture of KGAT lies, in introduc-
ing edge kernels for information propagation across the
graph and node kernels to reason over each evidence. The
graph is a complete graph (ever pair of node is connected
by an edge) made of the claim and the retrieved evidence
sentences as nodes. Specifically, for each claim c, with l
evidence sentences, the graph, G, is constructed with nodes
N = n1, .., np, ., nl. The label, y, is predicted as follows,

P (y|G) =
l∑

p=1

P (y|np, G)P (np|G) (4)

The term P (y|np, G) calculates the label with respect to all
the evidence aggregated from the graph while P (np|G) de-
notes the pth evidence selection probability which translates
as a measure of how strong a particular evidence is for its
corresponding claim. When combined with P (y|np, G), it
basically weighs the labels with respect to each evidence
sentence.

The procedure starts with developing the initial node repre-
sentations using a pre-trained BERT model. Each node np

is composed of m tokens of claim and n tokens of evidence
both including [SEP]. The hidden representations, Hp, are
obtained using BERT and the representation, Hp

0 , of the first
token, [CLS], is called the first representation of zp. For
further developing the representations using attention with

respect to the other nodes, the edge kernel uses token-level
attention. The attention coefficient, αp→q

i , for the ith token
in q due to p, is calculated as,

αp→q
i = softmaxi(Linear( ~K(Mp→q

i ))) (5)

where i = 1, ...,K and each element of ~K is the Gaussian
kernel defined as follows,

Kk(M
p→q
i ) = log

∑
j

exp(−
(Mp→q

ij − µk)
2

2δ2k
) (6)

where µk and δk are the mean and width of the kth kernel
for k = 1, ...,K and

Mp→q
ij = cos(Hp

i → Hq
j ) (7)

which translates as the similarity between the BERT rep-
resentation of the corresponding tokens. Recall that i, j =
1, ...,m+n. The final combined token representation, ẑp→q ,
of q due to p, is calculated as a linear combination of the
previous token representation and the corresponding current
token attention weight. This combined token representation
is used to calculate the representation vp of node np as

vq = (

l∑
q=1

βp→q ẑp→q)|zq (8)

where | means the concatenate operator and βp→q is calcu-
lated as

βp→q = softmaxp(MLP (zq|ẑp→q)) (9)

To summarize the procedure so far followed in the paper,
the similarity between the previous representations of each
neighboring nodes’ token is used to calculate the attention
weight for the edge-kernel of a particular neighboring node
and it is used along with the concerned node’s previous
representation to develop the current representation of that
node. Now on the basis of vq, the label of the claim is
determined using P (y|nq, G) = softmaxy(Linear(v

q)).
This way the label predicted for the claim is based on the
information received from all the claim-evidence pairs.

Next step in the procedure is to calculate the ”readout” mod-
ule that combines the weighted label predicted on each node
where weights are calculated according to how important
a particular evidence is to the claim given the other claim-
evidence pairs. In other words,

P (np|G) = softmaxp(Linear(φ(n
p))) (10)

where φ(np) is called the ”readout” representation or the
node-kernel representation of the node np and is calculated
as,

φ(np) =
1

m

m∑
i=1

~K(M c→ep

i ) (11)
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where (M c→ep

i is calculated in a similar fashion as de-
scribed for edge kernels with the difference that it is cal-
culated between the representations of claim and the pth

evidence. This procedure translates to developing the node-
kernel as a measure of similarity between the token rep-
resentation of the claim and pth evidence and then using
this node-kernel to determine how important a particular
evidence is for the given claim.

Finally, the label predicted according to each claim-evidence
pair is weighted with the ”readout” module and the final
labels are calculated according to equation(4). The model is
trained using cross entropy loss between the predicted and
the actual label.

3. Implementation and Evaluation
The focus of the implementation of this paper will be
on (Clark et al., 2019). The code was made available at
https://github.com/clarkkev/attention-analysis. I performed
6 experiments that can be broadly divided into two cate-
gories as described above. These will be discussed below.

The implementation starts with pre-training of BERT with
992 Wikipedia segments. The result you see below are
developed from attention maps extracted from BERT dur-
ing training implying the relations learnt by BERT were
completely self-supervised.

Before being operated on by BERT, the segments needed to
be put into the required format:

[CLS]1st paragraph[SEP]2nd paragraph[SEP]

Each segment provided to BERT was processed to have
two consecutive paragraphs equivalent of 128 tokens. Now
with this as input, attention map of each head in BERT was
extracted. To be precise, attention map refers to, given a
token in a segment provided to a particular attention head,
which other token in that segment does that head attend
to and with what intensity. Intensity here would refer to
how large the attention weight is. The BERT used here
comprises of 12 layers each with 12 attention heads. For the
1st experiment, the attention maps for 4 heads at 4 different
layers for multiple tokens have been shown in Figure 1, 2
and 3 for three different segments.

Figure 1. 256th segment

Figure 2. 196th segment

Figure 3. 325th segment

The heads belong to the layers, from left to right, 1, 3, 8
and 12 respectively so that the attention maps in the early
layers, the middle layers and the later layers can be studied.
In 3, the top picture is the attention map of the 1st head and
the bottom picture is the attention map from the 12th head
of the respective layers. The thing to notice here is how
the model has learnt which word should be associated with
which other word in a completely self-supervised manner.

The intensity of the link between the left and right columns
of each head denote the weight of attention between those
tokens. For the same segment, the first layer seems to focus
equally on all the tokens provided. While by the third layer,
the attention is accurately concentrated on the next token in
the actual segment. By the 8th layer, almost all the attention,
regardless of the segment, is focused on the [SEP] token
and in the 12th layers, the weight of attention coefficient
reduces but it is still the [SEP] token that is given most of
the attention. This progression of learning as the tokens
pass through the layers is noticeable.

Recall another observation from the paper that said heads
are mostly attentive towards either the previous token or
the next token. Through the 2nd experiment, it becomes
evident. While for the 1st and the last layers, there are a
few heads attending to the current token like ”1950” −→
”1950” in 1 1st layer and ”145” −→ ”145” in 2, most of the
significant attention weights are on the next and previous
tokens in the segment. The last plot in 4 further strengthens
this claim as it shows the average attention on next, previous
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and current token and the current token received the least
amount of attention in all layers. This observation agrees
with what happens in an actual language where each word is
significant only in the context of other words in the sentence
and helps develop a meaningful sentence.

Figure 4. Average attention on various types of tokens

Another important observation with far reaching conse-
quences found in these experiments was the distracted na-
ture of these attention heads in general. The 3rd experiment
confirms this as attentions on token of specific types are
analysed. As shown in the first picture of Figure 5 the aver-
age attention entropy in the layers, specially in the central
layers, is comparable to uniform attention. The plotted quan-
tity is attention entropy, a high value of which indicates less
concentrated attention. This consequence was also observed
in (Liu et al., 2020) wherein they tried kernel attention to
mitigate the drawback of dot product attention.

Figure 5. Average attention entropy

It is also worth noting that in the second picture of Figure 5,
the last and the first layer has a very high attention entropy
on the [CLS] token. As noted previously, this is significant
as in at the beginning of learning process (in layer 1), it is
not known as to which token should be attended to the most,
while at the end of it (in layer 12), the vector representation
thus produced should be a representation of all the tokens
present.

In the 8th layer, highest attention weight led to the [SEP]
token in all figures 1, 2 and 3. To investigate this behavior
further, the average attention on each token is monitored.
Specifically, the attention on special tokens [SEP] and [CLS]
are studied.

In the top two pictures of Figure 4, it can be seen that the
maximum attention in the middle layers was on the [SEP]
tokens. Now recall that the input to BERT was 128 tokens
comprised of two paragraphs with two [SEP] tokens. So
statistically, the attention on [SEP] should be close to 1

64 .
That clearly does not explain the behaviour in Figure 4.

The 4th experiment was, therefore, to further study this
behaviour where the attention heads were specifically eval-
uated for dependency parsing on labelled data-sets, to in-
vestigate how semantic dependencies are learnt. This de-
pendency is formally defined as given an input word in a
sentence to a head, which other word from the sentence does
the head assigns the largest weight to. This would imply
that for a given input word, the head assigns the highest
attention to that other word and thus drawing a dependency
between those two words.
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Figure 6. Curious case of attention on [SEP], Layer 8- Head 11

As has been mentioned previously, for better explainability,
word-word attention maps were developed instead of token-
token. For example, the word disappointed is made up
of two tokens, dis and appointed. To convert the token
attention map to that of word for this example, the attention
to dis and to appointment would be added as the attention to
disappointment and for attention from disappointment, the
mean of the attention from dis and that from appointment
would be calculated. Proceeding this way, the dependencies
captured by each head, for the segment provided to them,
was mapped. As can be seen in Figure 6, the words on left
that have nothing to attend to, attend to [SEP]. Therefore
the provided hypothesis (Recall Section 2.2) on [SEP] being
the default target of each head’s attention stands true.

Figure 7. Attention for possessive nouns, Layer 7 - Head 6

Figure 8. Attention for prepositions, Layer 9 - Head 6

The 5th experiment consisted of probing the individual
heads for attention maps and some more semantic dependen-
cies learnt by the heads were discovered as shown in Figures
7 and 8. The [SEP] attention here is not displayed for clarity
although their attention would be like the ones shown in
Figure 1 - 3. It should be noted that such good learning of
semantic dependencies were only found for some heads and
that it is not a general pattern as can be seen in Figures 9,
10 and 11, where the learnt dependency is not so accurate.

Figure 9. Incorrect attention for nouns, Layer 5 - Head 11
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Figure 10. Incorrect attention for prepositions, Layer 3 - Head 6

Figure 11. Incorrect attention for possessive nouns, Layer 12 -
Head 6

The next sub-task was that of monitoring coreference resolu-
tion learnt in BERT. In language, when two different words
refer to the same noun, one of them is called the antecedent
(the one with the actual form) and the other is the proform.
For example,in the sentence, Henry was hungry so he ate,
Henry is the antecedent and he is the anaphor. The attention
maps from BERT were tested for the same. As can be seen
from Figure 13, BERT is more or less capable of capturing
the coreference as in the attention graph, company, it and
its, they all attend to company as they should. But again,
this efficiency is not constant as can be seen from Figure ??.

Figure 12. Coreferencing in BERT in Head 11 in Layer 7

Figure 13. Incorrect coreferencing in Head 11 in Layer 2

The last experiment was to verify if there are any similari-
ties between the attention maps furnished by various heads.
As described earlier, this was measured through the Jensen-
Shannon divergence between the attention distributions and
a corresponding two dimensional embedding was developed
representing each attention head such that measure of the di-
vergence is maintained. Accordingly, the heads found good
with semantic abilities described above are plotted, that are
layer 7-head 10 for nouns, layer 8-head 5 for preposition,
layer 6-head 5 for possessive nouns and layer 4-head 3 for
coreference. As can be seen in from the first plot in Figure
14, the above mentioned heads that learnt the semantics
well are close together, so are the heads that attend broadly
and the ones that attend to [SEP]. However, no pattern was
found for the [CLS] token. This observation are on basis of
hard thresholds as in for an entropy value of 3.8 and above,
the heads were said to attend broadly, for an attention value
of 0.6, the head was said to be focused on the [CLS] or the
[SEP] token. In the second plot of 14, attention between the
heads belonging to similar layers show up closer on the two-
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dimensional graph which mean their attention distributions
must have been similar as well.

Figure 14. Clustering with respect to attention distribution

4. Discussion
Analysing the papers mentioned here, it is easy to see that
(Liu et al., 2020) efficiently addresses the problems previ-
ously noted for attention and graph networks. This part of
the section will analyse those.

As (Zhou et al., 2019) aims to solve the same problem as
(Liu et al., 2020), we will first compare and contrast the
methods used by each of them. Both the papers use the
FEVER dataset to experiment with their models. While the
document retrieval procedure is same in both, (Zhou et al.,
2019) retrieves the sentences using relevance score with
threshold and (Liu et al., 2020) implements BERT to project
the hidden state representation of [CLS] into a ranking score

with pairwise loss. The procedure of claim verification, as
explained in both the subsections, use completely different
techniques. While they both attempt to reason over all
the evidences for a particular claim, the derivation of the
attention coefficient in (Zhou et al., 2019) for the prediction
of label per node is completely different than that in (Liu
et al., 2020), as the latter uses edge-kernel attention for the
same. Similarly for the evidence aggregator, (Zhou et al.,
2019) uses simple aggregators such as attention, max and
mean while (Liu et al., 2020) uses the node-kernel attention
developed by (Knyazev et al., 2019) for the purpose. In its
results, (Liu et al., 2020) quotes scores from (Zhou et al.,
2019) for fact verification in using FEVER and LA dataset
for claims that require both multiple and single evidences
and reports the highest scores to be achieved by (Liu et al.,
2020).

(Liu et al., 2020) further probes the function of the kernels
used in KGAT. Recall that (Clark et al., 2019) reported that
the attention heads in their model that were using dot prod-
uct spent at most 10% of their attention mass on any single
word, which translates to not having a focused attention
the tokens that are more important that other. (Liu et al.,
2020) also compares this focus for their kernel attentions,
dot-product attention and uniform attention and found that
kernel attention fares best in paying high attention to small
number of tokens. Paying more attention to a selective num-
ber of features helps the model learn those better than the
other features.

While (Liu et al., 2020) conducts a case study on a sam-
ple claim to analyse the attention distribution of the overall
model on the claim and the evidence sentences thus re-
trieved, the attention distribution with respect to layer in
KGAT, as analysed in (Jawahar et al., 2019), would be inter-
esting to compare with that of BERT since both of them are
after all used for developing language models.

The major improvement in KGAT over other models is the
node kernel for calculating the weight of each evidence with
respect to the claim while combining the label predictions
from each node. This aspect of having attention on nodes
has been well studied in (Knyazev et al., 2019). Much
details have not been provided regarding how the methods
specified in (Knyazev et al., 2019) were used in (Liu et al.,
2020), but through the performance of the KGAT model it
is highly likely that the directions given in the former study
were followed.
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