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Sensor position estimation

I. INTRODUCTION

Based on field reconstruction [1], the problem formulated to
predict the position of the sensors has been described.

II. PROBLEM FORMULATION

Riemann approximation of the Fourier coefficients with the
noise corrupted sample values,

Âgen[k] =
1

M

M∑
i=1

go(si)e
−j2πki/M (1)

Thus reconstructing the field using these,

ĝ(sl) =

k=b∑
k=−b

Âgen[k]e
jk2πsl

=

k=b∑
k=−b

ejk2πsl(
1

M

M∑
i=1

go(si)e
−j2πk i

M )

=
1

M

k=b∑
k=−b

(

M∑
i=1

go(si)e
j2πk(sl−

i
M

))

=
1

M

M∑
i=1

(

k=b∑
k=−b

go(si)e
j2πk(sl−

i
M

))

=
1

M

M∑
i=1

(go(si)
e−j2πb(sl−

i
M

)(ej2π(2b+1)(sl−
i
M

) − 1)

ej2π(sl−
i
M

) − 1
) (2)

Bringing it to a compact form,

ĝ = Fgo (3)

where,

F =


e
−j2πb(s1−

1
M

)(ej2π(2b+1)(s1−
1
M

)−1)

e
j2π(s1−

1
M

)−1
...

e
−j2πb(s1−

M
M

)(ej2π(2b+1)(s1−
M
M

)−1)

e
j2π(s1−

M
M

)−1

. ... .

. ... .

e
−j2πb(sM− 1

M
)(ej2π(2b+1)(sM− 1

M
)−1)

e
j2π(sM− 1

M
)−1

...
e
−j2πb(sM−M

M
)(ej2π(2b+1)(sM−M

M
)−1)

e
j2π(sM−M

M
)−1

,

and

ḡo =


go(s1)
go(s2)
.
.

go(sM)


Thus, the optimisation problem takes the form,

s̄ : minimize
s̄

∥∥∥∥ 1MFḡo − ḡo
∥∥∥∥2
2

(4)

subject to
0 ≤ s1 ≤ s2 ≤ ... ≤ sM−1 ≤ sM

III. COMPLETE SOLUTION WITHOUT ASSUMPTIONS

The original problem in 4 had each variable bounded by the
other variables, restated here for convenience,

0 ≤ s1 ≤ s2... ≤ sM−1 ≤ sM

The above inequalities can be recast as,

a1 = s1, a1 > 0

a2 = s2 − s1, a2 > 0

a3 = s3 − s2, a3 > 0

.

.

.

aM = sM − sM−1, aM > 0

(5)

Therefore, the problem can be stated as,

s̄ : minimize
s̄

∥∥∥∥ 1MF(s)ḡo − ḡo
∥∥∥∥2
2

(6)

subject to
A− T s̄ = 0

T s̄ ≥ 0
s̄ ≥ 0

where, A =


a1
a2
.
.
aM

, and

from 5, T =



1 0 0 ... 0 0
−1 1 0 ... 0 0
0 −1 1 ... 0 0
. ... .
. ... .
. ... .
0 0 0 ... −1 1


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IV. REFORMULATION

Rewriting the optimization problem in (??) in terms of the
independent variables. As is defined in (5), we can equivalently
write,

s1 = a1, s1 > 0

s2 = a1 + a2, s2 > 0

s3 = a1 + a2 + a3, s3 > 0

.

.

si = a1 + a2 + a3 + ...+ ai, ai > 0

∀i ∈ [1,M]

(7)

The elements of F-matrix in (II) can be written as

Fi,k =
e−j2πb(si−

k
M

)(ej2π(2b+1)(si−
k
M

) − 1)

ej2π(si−
k
M

) − 1
(8)

Rewriting in terms on 7, we have

Fi,k =
e−j2πb(a1+a2+...+ai−

k
M

)(ej2π(2b+1)(a1+a2+...+ai−
k
M

) − 1)

ej2π(a1+a2+...+ai−
k
M

) − 1
(9)

Therefore, the optimization problem can now be written as,

ā : minimize
ā

∥∥∥∥ 1MF(a)ḡo − ḡo
∥∥∥∥2
2

(10)

subject to
s̄− Lā = 0

s̄ ≥ 0
ā ≥ 0

where L is a lower triangular matrix of size MxM.

V. CORRECTED VERSION

The previous formation of matrix had assumed the constant
difference of 1

M
between the sampling point which will not

be so for randomly generated sampling points.. Therefore, for
estimation of Fourier coefficients now we have

Âgen[k] = s1g
o(s1)e

−j2πks1 +

M∑
i=2

(si − si−1)g
o(si)e

−j2πksi

(11)
Accordingly, the closed form equation of the reconstructed sam-
ples would be

ĝ(sl) =

k=b∑
k=−b

Âgen[k]e
jk2πsl

=

k=b∑
k=−b

(
(s1g(s1)e

j2πk(sl−s1)) + (

M∑
i=2

(si − si−1)g(si)

ej2πk(sl−si)))

)

= s1g(s1)
sin(π(2b+ 1)(sl − s1))

sin(π(sl − s1))
+

M∑
i=2

(
(si − si−1)

g(si)
sin(π(2b+ 1)(sl − si))

sin(π(sl − si))

)
(12)

Rewriting in a compact form

ĝ(s) = FSg(s) (13)

where,

F =


F(1, 1) F(1, 2) F(1, 3) ... F(1,M)
F(2, 1) F(2, 2) F(2, 3) ... F(2,M)
. . . ...
. . . ...
. . . ...

F(M,1) F(M,2) F(M,3) ... F(M,M)

,

In accordance with 13

F(i, j) =
sin(π(2b+ 1)(si − sj))

sin(π(si − sj))
(14)

For elements at i = j, the limit is calculated to be (2b+1). And
given the elements F, it can be seen that V is symmetric. And,

S =


s1 0 0 ... 0
0 s2 − s1 0 ... 0
0 0 s3 − s2 ... 0

.

.
0 0 0 ... sM − sM−1

 To remove

the dependency of variables, adopting the method shown in (7),
redefining (14) as

F(i, j) =
sin(π(2b+ 1)(a1 + a2 + ...+ ai − a1 − a2 + ...− aj))

sin(π(a1 + a2 + ...+ ai − a1 − a2 + ...− aj))
(15)

Considering that F is symmetric and thus can be expressed such
as i > j always, we can rewrite the above expression for F as

F(i, j) =
sin(π(2b+ 1)(aj+1 + aj+2 + ...+ ai))

sin(π(aj+1 + aj+2 + ...+ ai))
(16)

And, S =


a1 0 0 ... 0
0 a2 0 ... 0
0 0 a3 ... 0

.

.
0 0 0 ... aM


Finally, the optimization problem can be solved as

ā : minimize
ā

‖FSḡo − ḡo‖22 (17)

subject to
ā ≥ 0

where L is a lower triangular matrix of size MxM.

VI. RESULTS FOR LOWER SAMPLES

Each simulation was run 20 times. Expression for the error
functions:-

O =
average(||grec − g||

2
2)

n
(18)

E =
E[|arecon(k) − a(k)|2]

n
(19)

E averaged over number of simulations (20 in this case).

P =
||strue − srec||

2
2

n
(20)
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P averaged over 20 simulations. The following results are for
noiseless case.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

The following results are for the noisy case.

Fig. 7

Fig. 8
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Fig. 9

Fig. 10

Fig. 11

VII. RESULTS USING NN

A neural network was implemented as the problem was treated
as a nonlinear regression problem. The neural network was
trained with the magnitude of the field as input and the sampling
locations as output from the data generated by three different
distributions and varying SNR (noiseless, 5, 10 and 20dB).
The neural network was made up of 3 hidden layers and the
input and output layers.Other parameters were varied to land up
at the best result and they have been mentioned in the caption.The
reconstruction results are presented below.

Fig. 12: Noiseless, Reconeror:1.9%, batchsize:10, epoch:50,
N:100,60,60

Fig. 13: Noiseless, Reconeror:2.4%, batchsize:10, epoch:50,
N:60,100,100

Fig. 14: Noisy, Reconeror:8.4%, batchsize:10, epoch:50,
N:60,100,100

Fig. 15: Noisy, Reconeror:8.2%, batchsize:100, epoch:50,
N:100,60,60
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Fig. 16: Noisy, Reconeror:8.12%, batchsize:1000, epoch:500,
N:120,200,200

Fig. 17: Noisy, Reconeror:8.05%, batchsize:1000, epoch:500,
N:120,200,200,testsize=0.1
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